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Abstract We consider the late-time tailing in a tracer test performed with a push-drift methodology (i.e.,
quasi-radial injection followed by drift under natural gradient). Numerical simulations of such tests are per-
formed on 1000 multi-Gaussian 2-D log-hydraulic conductivity field realizations of varying heterogeneity,
each under eight distinct mean flow directions. The ensemble pdfs of solute return times are found to
exhibit power law tails for each considered variance of the log-hydraulic conductivity field, r2

ln K . The tail
exponent is found to relate straightforwardly to r2

ln K and, within the parameter space we explored, to be
independent of push-phase pumping rate, pumping duration, and local-scale dispersivity. We conjecture
that individual push-drift tracer tests in wells with screened intervals much greater than the vertical correla-
tion length of the aquifer will exhibit quasi-ergodicity and that their tail exponent may be used to infer r2

ln K .
We calibrate a predictive relationship of this sort from our Monte Carlo study, and apply it to data from a
push-drift test performed at a site of approximately known heterogeneity—closely matching the existing
best estimate of heterogeneity.

1. Introduction

Single-well injection withdrawal (SWIW) tracer tests are commonly performed, and interpretation methodol-
ogies have been proposed for inference of many subsurface parameters from their breakthrough curves.
This body of interpretive theory generally assumes radially symmetric flow, with particles tracing the same
paths on their outbound and inbound journeys and implying last-in-first-out (LIFO) behavior. (The literature
review in Hansen et al. [2016] contains an extensive discussion of these assumptions.) Background ground-
water flow (drift) and heterogeneity cause nonradial, hysteretic flow patterns and violate the LIFO assump-
tion, complicating test interpretation by generating heavy tails that may spuriously be attributed to other
causes [Lessoff and Konikow, 1997]. Johnsen and Whitson [2009] presented analysis quantifying the effect of
solute path hysteresis caused by background drift on push-pull breakthrough curves obtained from homo-
geneous velocity fields and Hansen et al. [2016] studied this phenomenon numerically in heterogeneous
velocity fields.

Comparatively little has been published which exploits the asymmetry between injection and extraction
phases caused by background drift in order to extract information about the subsurface. Exceptions include
the works of Leap and Kaplan [1988] and Hall et al. [1991], who studied use of drift-pumpback (‘‘push’’ phase
under natural gradient and pull phase under forced gradient) to measure groundwater velocity. Also,
Novakowski et al. [1998] presented an analytical-numerical approach to inference of matrix diffusion from
push-drift tests (push phase under forced gradient, ‘‘pull’’ phase under natural gradient) in fractured porous
media. All three of these approaches assumed idealized (radial or linear) flow regimes.

In this note, we further consider the information that can be obtained from an asymmetric (i.e., push-drift) test. We
exploit the basic numerical framework originally developed by Hansen et al. [2016] to study the robustness of ideal-
ized push-pull test interpretation methods under nonideal conditions, and instead apply it to the study of push-
drift tests. In particular, our goal is to assess the degree of heterogeneity from push-drift test breakthrough curves.

Our motivation for this attempt is as follows: in a push-drift test in a 2-D hydraulic conductivity field (K-field),
only a small packet of solute leaving the well at time zero will return to the well, with all other solute pack-
ets missing the well during the drift phase, as seen in Figure 1. In a totally homogeneous aquifer, stream-
lines in both radial flow and in background drift are straight, so (excluding local-scale dispersion) there is
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essentially no pathline hystere-
sis experienced by particles
recaptured at the well. In het-
erogeneous media, the packet
of solute that ultimately returns
to the well will generally travel
along disjoint outbound and
inbound streamlines, each with
different velocities. Since the
distribution of streamline veloci-
ties increases with heterogene-
ity, it is reasonable to posit that
the distribution of return times
in an ensemble of 2-D K-fields
with the same heterogeneity
statistics will similarly broaden
with increasing subsurface het-
erogeneity, and will thus con-
tain information about
heterogeneity. Furthermore,
under the common horizontal
flow assumption for layered
aquifers [e.g., Pickens and Grisak,
1981; G€uven et al., 1985; Klotzsch
et al., 2017], the observed
breakthrough curve is a flux-
weighted average of the break-
through curves for multiple

layers intersected by the screen, each of which may be conceived of as an independent 2-D K-field realiza-
tion. Assuming no correlation between hydraulic conductivity at the well bore and pathline hysteresis, as
well as no pore-scale dispersion, we conclude that the push-drift breakthrough curve will be approximated
by the return time pdf for an ensemble of 2-D K-field realizations.

Consequently, we aim to relate properties of the ensemble 2-D return time pdf to r2
ln K . Because of the diffi-

culties inherent in approaching such stochastic problems analytically, we perform a large-scale Monte Carlo
computational study of push-drift tests to gain insight into this relationship. In section 2, we describe the
Monte Carlo study. In section 3, we establish an empirical relationship between heterogeneity and late-time
push-drift breakthrough behavior. In section 4, we corroborate our relation against a real data set. In section
5, we recapitulate what we have learned.

2. Methodology of Monte Carlo Study

We performed a computational study, using 1000 realizations of 50 m by 50 m, multi-Gaussian, isotropic, 6
2-D log-hydraulic conductivity fields, with constant conductivities assigned to each cell on a 100 by 100
grid. All realizations assumed an exponential semivariogram with a correlation length of 4 m, and a geomet-
ric mean hydraulic conductivity of 1024 m/s. The realizations were divided into batches of 250, each batch
featuring a different value of r2

ln K , respectively: 0.5, 1.0, 1.5, and 2.0.

For each conductivity field (with index i), we ran three steady state flow simulations in PFLOTRAN [Lichtner
et al., 2015]. For the first (quasi-radial) simulation, we imposed a constant mass injection rate per unit depth
of 0.1 kg/m/s at the center and zero head at all points on the outer boundary, and computed a velocity
field, Ri , which is represented as 100 by 100 by 2 tensor of x and y direction cell-center velocities. For a sec-
ond simulation, we imposed no-flow boundary conditions on the north and south faces (i.e., at y 5 25 and
y 5 75), and constant head values, higher at the west edge (x 5 25), and lower at the east (x 5 75). The
resulting velocity field, Xi , with mean flow in the x direction, was computed, and then normalized to give a

Figure 1. Particle tracks from a push-drift simulation with 100 particles tracked in a
realization with r2

ln K 51:5, and mean background drift in the y direction. Particle paths are
traced during the push phase, and if at any time during the drift phase are noted to be
significantly downgradient of the injection ring, they are frozen. Paths that never return to
the injection ring are gray, the path that eventually returns is highlighted in red.

Water Resources Research 10.1002/2017WR020852

HANSEN ET AL. HETEROGENEITY AND PUSH-DRIFT TESTS 6323



mean flow velocity of 0.01 m/h. For a third simulation, we imposed no-flow boundary conditions on the west
and east faces (i.e., at x 5 25 and x 5 75), and constant head values, higher at the south edge (y 5 25), and
lower at the north (y 5 75). The resulting velocity field, Yi , with mean flow in the y direction, was computed,
and then normalized to give a mean flow velocity of 0.01 m/h. Since tracer only interrogates the area immedi-
ately surrounding the well, the no-flow boundary conditions imposed at the edges of the domains for the
quasi-linear simulations were not considered to be relevant. In all three cases, velocity fields were steady state.
These velocity fields were used to simulate push-pull tests under a variety of conditions.

For each K-field realization, eight push-phase and corresponding drift-phase velocity fields were generated.
These were determined in identical fashion, except for the direction of mean flow (all of the cardinal and
intercardinal directions were examined for each realization). Using the principle of superposition, a linear
combination of the velocity fields from the three PFLOTRAN flow simulations described above was com-
puted to determine the velocity field during both the push and the drift phases of the test. Where the angle
of mean flow to the x axis is h, background drift was simulated for each realization by scaling all the cell-
center velocity vectors from the mean x direction simulation by cos ðhÞ and all the cell-center velocity vec-
tors from the mean y direction simulation by sin ðhÞ. The drift-phase velocity tensor is computed as Di5cos
ðhÞXi1sin ðhÞYi and the push-phase velocity tensor as Pi5Ri1Di . This superposition process is illustrated in
Figure 2 for one particular realization. The corresponding scaled vectors for each cell were added to gener-
ate the effective background drift velocity in each cell. In all cases, the average background drift velocity
had magnitude 0.01 m/h; this velocity was chosen arbitrarily (its magnitude scales the distribution of parti-
cle return times, but does not alter the power law exponent of this distribution). During the push phase, the
corresponding cell-center velocity vectors from the quasi-radial simulation were also added.

For each of the eight sets of push-drift velocity fields, for each K-field realization, four distinct push-drift par-
ticle tracking simulations were performed, of types A through D. Each employed constant, small time steps
of duration 0.05 h. For each particle in each simulation, at each time step, the velocity field was interpolated
based on the particle’s starting location. For the entire time step, the particle traveled along its local stream-
line, and then (except in type D simulations) underwent a small random Fickian dispersive motion deter-
mined by al50:01 m, at5al=10, and the streamline velocity. The characteristic local-scale dispersivity, al,
was chosen based on the reported ranges in Schulze-Makuch [2005] for a sandy aquifer. All particle tracking
simulations commenced by introducing particles in a ring around the injection location at the center of the
domain. The four types of simulations are described immediately below:

1. Type A simulations saw particles tracked during a push phase of 80 h, during which radial and back-
ground flow were operative, generating a characteristic interrogation radius of 3.0 m.

2. Type B simulations were identical to type A simulations, except that their push phase was taken to be
instantaneous (i.e., the same volumetric injection of water was simulated as in type A simulations, but no
background drift was operative).

3. Type C simulations were identical to type A simulations (including featuring the same injection rate), except
they featured a push phase that lasted 160 h, leading to a characteristic interrogation radius of 4.3 m.

4. Type D simulations were identical to type A simulations, except no local-scale dispersion was operative
(al5at50 m).

In all simulations, the subsequent drift phase employed an identical velocity field, and employed the same
local-scale dispersivity as employed in the push phase. The drift phase proceeded for 4000 h for type A, B,
and D simulations, and 5000 h for type C simulations, or until all particles had passed or entered the injec-
tion ring. No processes other than local-scale dispersion and advection affected the particles.

For each push-drift simulation (6000 simulations were performed for each value of r2
ln K : eight flow direc-

tions times 250 distinct K-field realizations times three push-phase implementations), if a particle reentered
the ring during the drift phase of the simulation, the time at which this occurred was recorded and the par-
ticle was removed from the system. At the end of each simulation the average time of arrival was recorded.
An example simulation is shown in Figure 1.

3. Relationship Between r2
ln K and Power Law Exponent

For each of the r2
ln K , for each push-phase regime type (i.e., A, B, C, or D). Gaussian kernel density estimation

was applied to generate pdfs from the return times derived from the 2000 simulations. Because each pdf
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was determined to have a power law tail, the tails were plotted in log-log space and linear regression was
applied to determine the tails’ slopes. The empirical pdfs (normalized by square root of the push-phase
time for easy comparison) and their superimposed regression lines are presented in Figure 3. We note that
the tail slope is not seen to be affected by injection rate or injection volume, within the limits we explored.
Naturally there will be some characteristic interrogation radius that is too small to properly sample the
domain, but we conclude that it is below the radii considered here, which are of the same order as the cor-
relation length of the K-fields. Tail slope was also seen to be insensitive to local-scale dispersion, within the
limits explored. This is to be expected as, to a much greater extent than in push-pull tests, pathline hystere-
sis due to drift may be expected to dwarf that due to local-scale dispersion.

For each of r2
ln K 5 0.5, 1.0, 1.5, and 2.0, late-time slopes of 210.7, 23.8, 22.7, and 21.9, respectively, were

determined. Since the slopes are numerically equal to the corresponding power law exponent, these data
lead to the simple empirical approximation:

cðtÞ / t2a; (1)

Figure 2. Visual representation of the superposition of radial, Ri , x direction, Xi , and y direction, Yi , velocity fields to generate the drift-
phase vector field, Di , and push-phase vector field, Pi , for a single realization, i. Quiver plots for each field are shown, with braces indicating
a superposition operation. In this example, r2

ln K 51:5 and h5p=4. Note that arrow length scale is not the same between different quiver
plots.
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a � 4:2 r2
ln K

� �21:25
; (2)

for large t, where t represents the time since test commencement and c(t) represents the concentration
observed at the well. The regression slopes, along with jaj determined by (2) are shown in Figure 4.

Since tail slope obtained from a log-log concentration versus time breakthrough curve determines the esti-
mate of r2

ln K , it is simple to estimate error resulting from data variability. This may be done by adapting a
well-known estimate [e.g., Draper and Smith, 1998, pp. 35, 48] for the variance of a slope obtained by linear
regression:

Figure 3. Log-log plot of ensemble return time pdfs for each of four values of r2
ln K : 0.5, 1.0, 1.5, and 2.0. Solid, dashed, dotted, and dash-

dotted curves derive, respectively, from simulations of types A, B, C, and D. The power law tails fit by linear regression in log-log space are
superimposed as thick, black dotted lines.

Figure 4. Dashed line: plot of r2
ln K against jaj, according to (2). Diamonds: actual slopes of late-time tails in log-log space shown in Figure

3, as determined by the Monte Carlo study.
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r2
a �

1
n22

Xn

i51

ln
ci

ĉi

� �� �2

Xn

i51

ln
ti

�t

� �� �2 : (3)

Here n is the number of concentration-time data points, (ci, ti), used to determine the tail slope, ĉi is the
value of concentration that is predicted by the regression at each time, ti, and �t is the sample mean of all
the ti employed in the regression. (Figure 5 illustrates linear regression from a set of discrete data points in
the tail of a log-log breakthrough curve.) Once an estimate of a has been obtained by regression, confi-
dence interval bounds representing any number of standard deviations, ra, may be obtained and then
mapped into r2

ln K space via (2). It is important to stress that this estimate encapsulates aleatory uncertainty
due to noisy data only, assuming that the conceptual model underlying the interpretation methodology we
have presented represents reality. Uncertainty about conceptual model often represents a major source of
uncertainty in the subsurface—for example, other processes can lead to power-law breakthrough curves—
and a straightforward error estimate based on data alone naturally cannot encapsulate this.

4. Corroboration of Concept Using Real Data

To demonstrate the relation we have developed, we test it against a push-drift data set obtained from a
well completed in the regional aquifer beneath Mortandad Canyon on the grounds of the Los Alamos
National Laboratory. The portion of the aquifer in which the push-drift tracer test was performed has been
relatively well characterized, and a complete sedimentary record was obtained from a nearby core hole for
the sedimentary unit in which the well has been screened. Using the Kozeny-Carman correlation [Carman,
1997], it was possible to estimate the hydraulic conductivity profile at the core hole. This is shown in Figure
6. Based on this data, we conclude that r2

ln K � 1.

The push-drift test was performed under confined conditions, in a well with a 11.43 cm inner diameter, 12.7 cm
outer diameter casing, installed in a 31.1 cm diameter bore hole with a 7.25 m long screened section which
was surrounded by a 13.41 m filter pack. The mean depth of the screen is 288.4 m and the mean depth of the
filter pack is 288.9 m below ground surface. The water table varies seasonally and has dropped over time but is
currently about 273 m below ground surface. In total, 56.78 m3 of water with an approximately 1.3 mM concen-
tration of 1,6-NDS tracer was injected over 4 h, followed by an equal chase volume of water without 1,6-NDS,
injected over the subsequent 4 h. No further injection or extraction at the well was performed for the

Figure 5. Log-log plot (base e) of experimental push-drift 1,6-NDS concentrations, along with linear trend line fit to breakthrough curve
tail. Points used for tail regression are shown in blue.
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subsequent 90 days, save for periodic chemical sampling at the well, and the tracer was allowed to drift back
into the well under background flow conditions. The resulting breakthrough data is shown in Figure 6. The
slope of the late-time breakthrough tail was determined in log-log space to be 23.8. Employing (1–2), we arrive
at a prediction of r2

ln K 51:01, very close to the value obtained by direct core examination.

5. Conclusion

Using a large-scale Monte Carlo study, we explored the ensemble push-drift return time pdf for an ensem-
ble of 2-D, multi-Gaussian K-field realizations with a range of heterogeneities spanning from r2

ln K 50:5 to
r2

ln K 52. We noted a power law tail on the pdfs for all examined heterogeneities, noted the tail’s insensitivity
to push-phase methodology and local-scale dispersion, and observed that it was possible to relate the tail
exponent to the heterogeneity, which we encapsulated in the simple relation (2). We also proposed a
method for estimating the impact of data noise on the uncertainty of the estimate for r2

ln K .

Many aquifers are known to be anisotropic, with typically only short-range correlation of hydraulic conduc-
tivities in their vertical direction compared to the horizontal directions. A sufficiently deep well will pene-
trate multiple vertical correlation lengths and, on the horizontal flow assumption, a push-drift test in such a
well will generate a breakthrough curve that may be conceived of as the flux-weighted superposition of a
large number of independent, 2-D horizontal push-drift tests. We thus conjectured that such tests per-
formed in the field will exhibit breakthrough curves proportional to the 2-D ensemble pdfs determined
here. We demonstrated this approach for interpretation of a push-drift tracer test breakthrough curve in an
aquifer for which heterogeneity data exist, and found that it closely matches estimates from existing data.
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